Glazialmorphologie

Gletscher haben seit mehreren zehntausend Jahren zur Formung der Berglandschaften beigetragen.

Derzeit ziehen sie sich zurück, doch die Spuren ihrer früheren Ausdehnung sind im Gelände noch sichtbar.

3.2 Fluvioglaziale Ablagerungen

In Zeiten des Klimawandels führt das Schmelzen des Eises zur Freisetzung grosser Wassermengen, welche von der Gletscheroberfläche ans Gletscherbett, an dessen Ränder und schliesslich zum Gletschertor gelangen (Abb. 1). Dieses Wasser ist in der Regel mit sehr feinen Sedimenten angereichert, was ihm eine milchige Farbe verleiht. Daher bezeichnet man das grau oder weiss getrübte Gletscher-Schmelzwasser auch «Gletschermilch”.

4.2 Klimaschwankungen und ihre Ursachen

Das Klima an der Erdoberfläche ist einem stetigen Wandel unterworfen und wechselt zwischen Warm- und Kaltzeiten. Die jüngste geologische Periode, das Quartär, dauert seit 2,6 Millionen Jahren und wird klimatisch besonders stark von den Schwankungen der Erdumlaufbahn beeinflusst.

4.1 Die Eiszeittheorie: Geschichte in Kürze

Die Eiszeittheorie wurde zwischen 1840 und 1841 wissenschaftlich formuliert. Dabei handelt es sich um eine auf Feldbeobachtungen basierende Theorie, die besagt, dass Gletscher in der Vergangenheit größere Ausdehnungen hatten als heute.

1.5 Vergletscherte Felswände und Hängegletscher

Glaziale Prozesse kommen auch an vertikalen Felswänden vor. Damit das Eis an einer Steilwand haften bleibt, muss diese das ganze Jahr über gefroren sein. Wenn sich die klimatischen Bedingungen ändern und die Felswand wärmer wird, kann das Eis vergletscherter Felswände oder können Hängegletscher verschwinden. Das so freigelegte Gestein ist nicht mehr vor Erosion geschützt, was zu Steinschlag führt.

4.8 Auswirkungen des Klimawandels auf die alpine Umwelt

Durch die globale Erwärmung verändert sich die alpine Umwelt. Diese Veränderungen erhöhen die Umweltrisiken, bringen aber auch positive Effekte mit sich.

2.2 Mikroformen der glazialen Erosion

Die Gletschererosion (siehe Factsheet Gletscher 2.1) wirkt auf verschiedenen Skalen. Auf Felsen, die mit dem Eis in Kontakt gekommen sind, findet man Mikroformen, die von der Richtung und dem Verlauf der Gletscherbewegung zeugen.

4.7 Gletscher und Klimawandel: Zukunftsperspektiven

Für die nahe Zukunft wird erwartet, dass die Schweizer Gletscher aufgrund des Anstiegs der globalen Temperaturen weiter schrumpfen werden. Gemäss Daten des IPCC (Intergovernmental Panel on Climate Change) wird geschätzt, dass die globalen Jahresdurchschnittstemperaturen bis 2100 – je nach Szenario – um bis zu 4,8°C ansteigen könnten (siehe Factsheet Gletscher 4.6). In den Schweizer Alpen würde der Temperaturanstieg im Vergleich zur Entwicklung der globalen Jahresdurchschnittstemperaturen ungefähr doppelt so hoch ausfallen. Ein Temperaturanstieg von fast 5°C würde einem Anstieg der Gleichgewichtslinie der Gletscher um etwa 800 Meter entsprechen, was zu einem allmählichen Verschwinden der Alpengletscher führen würde (Abb. 1).

6.1 Gletscher-Surges

Einige Gletscher zeichnen sich durch starke Schwankungen in ihrer Fliessgeschwindigkeit aus: Sie wechseln zwischen «Ruhephasen» und Vorstossphasen.

6.2 Gletscherseeausbrüche und Eislawinen

Am 16. Juni 1818 führte der Bruch eines Eisdamms zu einer Flutwelle zwischen Mauvoisin und Martigny.

1.3 Morphologie der Gletscher

Die Gletscher der Erde sind sind bezüglich unterschiedlicher Charakteristika so vielfältig, dass für deren Beschreibung verschiedene Klassifizierungsarten verwendet werden. Die klassische Typologie basiert auf ihrer Form (Eiskappe, Talgletscher, Kargletscher usw.), aber sie können auch nach ihrer Dynamik klassifiziert werden (Hängegletscher, regenerierter Gletscher, stark schuttbedeckter Gletscher usw.).