Glazialmorphologie

Gletscher haben seit mehreren zehntausend Jahren zur Formung der Berglandschaften beigetragen.

Derzeit ziehen sie sich zurück, doch die Spuren ihrer früheren Ausdehnung sind im Gelände noch sichtbar.

3.2 Fluvioglaziale Ablagerungen

In Zeiten des Klimawandels führt das Schmelzen des Eises zur Freisetzung grosser Wassermengen, welche von der Gletscheroberfläche ans Gletscherbett, an dessen Ränder und schliesslich zum Gletschertor gelangen (Abb. 1). Dieses Wasser ist in der Regel mit sehr feinen Sedimenten angereichert, was ihm eine milchige Farbe verleiht. Daher bezeichnet man das grau oder weiss getrübte Gletscher-Schmelzwasser auch «Gletschermilch”.

3.1 Glaziale Ablagerungen

Die glaziale Akkumulation umfasst Ansammlungen von Lockermaterial, dessen Transport und Ablagerung vom Vorhandensein eines Gletschers abhängen. Glazigene Sedimente kommen in Form von relativ losen Ansammlungen von Lockermaterial vor, die mehrere hundert Meter dick sein können, oder als Reliefform, die in der Regel die Umrisse eines stationären Gletschers abgrenzt.

2.3 Makroformen der glazialen Erosion

Glaziale Makroformen sind auf regionaler Skala zu beobachten: Sie prägen die Alpentäler und sind der Ursprung bestimmter Bergseen.

5.2 Gletscherarchäologie

Die Entdeckung archäologischer Überreste auf den vom Eis freigegebenen Pässen liefert wichtige Informationen sowohl über die Geschichte der Besiedlung der grossen Alpentäler als auch über die Ausdehnung der Gletscher in der Vergangenheit.

1.5 Vergletscherte Felswände und Hängegletscher

Glaziale Prozesse kommen auch an vertikalen Felswänden vor. Damit das Eis an einer Steilwand haften bleibt, muss diese das ganze Jahr über gefroren sein. Wenn sich die klimatischen Bedingungen ändern und die Felswand wärmer wird, kann das Eis vergletscherter Felswände oder können Hängegletscher verschwinden. Das so freigelegte Gestein ist nicht mehr vor Erosion geschützt, was zu Steinschlag führt.

4.2 Klimaschwankungen und ihre Ursachen

Das Klima an der Erdoberfläche ist einem stetigen Wandel unterworfen und wechselt zwischen Warm- und Kaltzeiten. Die jüngste geologische Periode, das Quartär, dauert seit 2,6 Millionen Jahren und wird klimatisch besonders stark von den Schwankungen der Erdumlaufbahn beeinflusst.

4.7 Gletscher und Klimawandel: Zukunftsperspektiven

Für die nahe Zukunft wird erwartet, dass die Schweizer Gletscher aufgrund des Anstiegs der globalen Temperaturen weiter schrumpfen werden. Gemäss Daten des IPCC (Intergovernmental Panel on Climate Change) wird geschätzt, dass die globalen Jahresdurchschnittstemperaturen bis 2100 – je nach Szenario – um bis zu 4,8°C ansteigen könnten (siehe Factsheet Gletscher 4.6). In den Schweizer Alpen würde der Temperaturanstieg im Vergleich zur Entwicklung der globalen Jahresdurchschnittstemperaturen ungefähr doppelt so hoch ausfallen. Ein Temperaturanstieg von fast 5°C würde einem Anstieg der Gleichgewichtslinie der Gletscher um etwa 800 Meter entsprechen, was zu einem allmählichen Verschwinden der Alpengletscher führen würde (Abb. 1).

4.8 Auswirkungen des Klimawandels auf die alpine Umwelt

Durch die globale Erwärmung verändert sich die alpine Umwelt. Diese Veränderungen erhöhen die Umweltrisiken, bringen aber auch positive Effekte mit sich.

6.3 Entleerung von Gletscherseen und Wassertaschen

Gletscher-Schmelzwasser fliesst nicht immer ruhig ab. Gletscherseen und glaziale Wassertaschen, welche sich plötzlich entleeren, können sich im Gletschervorfeld, auf dem Gletscher, an dessen Rändern oder am Gletscherbett bilden.

5.3 Gletscher und Wirtschaft: Wasserkraft

In der Schweiz stammen 56% des produzierten Stroms aus Wasserkraftwerken. Das Schmelzwasser der Gletscher ist vor allem für Speicherkraftwerke (Stauseen) in den Bergen von Bedeutung. Wie wirkt sich der Rückgang der Gletscher aufgrund der globalen Erwärmung langfristig auf die Wasserkraftproduktion aus?